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I. INTRODUCTION

During the contract period the work focused on two activities: studies of high energy

electron acceleration and studies of the Alfv~n maser. The work on acceleration focused

on determining the intensity and scale lengths required to accelerate electrons to energies

of 5 MeV or more. It was found in earlier work, that a very high intensity of 20 W/cm2

is required for this purpose in the nighttime ionosphere, while the optimum frequency is

roughly twice the electron gyrofrequency. During the present contract period, a diffusion

code which solves the Fokker-Planck equation along the Hamiltonian surfaces to determine

the evolution of the distribution function was completed. Intensities roughly a factor of

four over threshold are required to yield good agreement between the particle and diffusion

codes. The diffusion code runs far more rapidly than the particle code and allows us to

make broad studies of parameter space. The work led to two manuscripts submitted for

rmblication to Physical Review Letters and Journal of Geophysical Research. These are

included in Appendix A.

The work on the Alfv~n maser started by determining the mode structure of low-

order shear Alfvn modes in the magnetosphere, including their transverse structure, and

ensuring that their coupling to the compressive modes is weak. With the study of the

mode structure completed. resonant acceleration mechanisms to determine if the Alfv~n

wave alone is sufficient to precipitate high energy ions were investigated. The results

indicate that localized, low-orde- MHD shear Alfvbn waves are not sufficient to precipitate

a large number of particles. It was, however, found that parallel electric fields caused by

plasma kinetic effects in conjunction with values of ktpPi -.z 0.1 can induce significant high

energy particle precipitation for electric fields above a threshold value which was derived.

Such waves can propagate inside natural or induced magnetospheric ducts. We note that

the physical mechanism of resonant excitation described here is quite different physically

from previous schemes discussed by Traklitcngerts and co-workers.



II. IONOSPHERIC DIFFUSION

A. Test-Particle ResuILs

The diffusion code which we have writcen is based on the concepts of stochasticity and

resonance overlap.' These concepts have played an increasingly important role in plasma

physics during the last decade. Our basic particle Hamiltonian may be written2

H = [(cP - qA) 2 + My2c] 1/2 + q4' = mc 2y + q4P, (2.1)

where
k k.A = A 1 sinVWe× + Acos ¢} - ATsin 0. + xBo~y,

4I, = D0 sir 7, (2.2)

ib = kjx + kjjz - wt,

and q is the particle's charge. This Hamiltonian represents single particle in an applied

electromagnetic wave propagating obliquely with respect to a magnetic field. We now use

a series of canonical transformations to reduce the Hamiltonian to the form2

H s- H0 + H1 , (2.3)

The zero-order Hamiltonian is given by

Ho = mc 2 (1 + 3_ + 1 / 2  P
M ic(22 c2  kl (2.4)

= rnc2 70- WP,

where p± and Pil are momentume perpendicular and parallel to the magnetic field, and the

first-order Haniltonian is given by

00

Hi = E Zisin(kilz + 1), (2.5)

where 0 is the gyroangle and

Z, = 2 [qThsin a - cos a Jj(k-p)
o~ q Im c jq j (2.6)

+ E -- J(kp) + f3- -to J, (L

M C j9



with
- IqlAi 1ql-42 jqf A3

( I c2  E2 -nc 2  
'c

2 (qj_ E3 = i . (2.7)

Here. a is the angle of wave propagation with respect to the magnetic field and Q is the

magnitude of the nonrelativisitic gyrofrequency.

Resonances occur when k1 + 19 = 0 or
ktlyll IQW l ?*?= 0, (2.8)

moy0 70

a result which is well-known from linear plasma theory. The resonance surfaces are elliptic

when the H-surfaces are hyperbolic and vice-versa. If the wave amplitude is small, than

an electron will be affected by at most one resonance. In this case, all but that single

resonance's contribution to the Hamiltonian can be ignored, and the Hamiltonian becomes

H = Ho(pj,p±) + ZI sin(klz), (2.9)

where z has been re-defined to absorb 10. In this re-defined coordinate system, the reso-

nance occurs at a point (pi-r, pir) where i = 0. Writing

1 82 Ho0

Ho(p1 ,p±) - Ho(pir,Pi) + 1 a2 (Pj - Pjjr) 2 1 (2.10)

and letting

-1 _a2 H (2.11)
11 r

we find that the Hamiltonian becomes

12-(Pl1 - Pjjr)2 + Zi sin(klz), (2.12)

which is just the standard pendulum Hamiltonian.' The trapping width and the bounce

frequency are given by

Apl = 4IMZI 1112 (2.13)

and

wb = k11ZI/Mi/ 2 , (2.14)

respectively.

It is important to note that the term "trapped" has a very specific meaning: it refers

to orbits close enough to resonancc .-o that ,vithin the rest frune of the resonance (not

3



the wave) the electrons undergo libratory rather than rotatory mocion. Electrons 1ot

clos: to a resonance still undergo acceleration but it is far weaker than the acceleration

undergone b:y those which are trapped. Standard rf heating schemes make use of the

resonant acceleration just described. Of course, acceleration is limited by the trapping

width. While this limitation is of no importance in schemes to heat a bulk plasma to

moderate energies, it is of great importance in schemes to heat electrons to ultrarelativistic

energies. In this latter case, a stochastic mechanism is needed to break the constraint

imposed by the finite trapping widths of the individual resonances. The separation on an

H-surface between two adjacent resonances is given by

6P = n2 _cQkc. (2.15)

The stochasticity threshold condition based on the overlap criterion now becomcs:

4 2 °w  > 1. (2.16)

Once this threshold has been exceeded, it is possible to accelerate electrons from resonance

to resonance. We can determine in this way the intensity required to accelerate iono.spheric

electrons to 10 MeV or more. These calculations may b,. found in reference 2.

B. Diffusion Equation

One can obtain the basic diffusion equation using either a Fokker-Planck approach 3

or a quasilinear approach.6 - 7 In either case, one obtains the equation

o(DL (2.17)

The Hamiltonian is a function of Plu and pj; thus, it is convenient to start with the

relativistic diffusion equation in cylindrical coordinates

a P(La + D -- 9) f ] 4- (D1111, +D11j_ Df , (2.18)

hlere
D! 1  10 dr (' 11(t)511(t + 7)),

0 0 
P

D1 1 = 1 d7 (Pj±(t)Pi±(t + r)), (2.19)/0
D11 = D = dr ( _(t) i1(t + r)),

4



The angiular brackets indicate an average over the gyroangle. It is assumed that any

initially nh.,,ngoneity in the angular distribution is rapidly smoothcd oat. Integratinig

over unperturbed orbits- the standard approxinLation of q,'-ilinear theory-we find

1=- 00

( E -Z5 k, , (2.20)

1=-00 -1t

Dt-r Dp±11  2 k1 mZ ( -

_= 0 p ±- rn ,

where ZA are resonance coefficients from Eq. (2.6) and 6(x) indicates the usual Dirac 6-

function.

These diffusion coefficients are not useful as they stand because they do not take into

account the decorrelation due to suochasticity which results in their broadening.8 Here, we

will assume that the b-functions are broadened by an amount which equals the trapping

widths of the undisturbed resonances. This assumption works well in practice as will

shortly be apparent from our results. Thus, we replace the 6-function by a function f(x),

where
S1/4wb, if xi < 2wb  (2.21)

f )= 0. if xj > 2 Wb

The quantity Wb corresponds to the bounce frequency in the lthe resonance.

Because the Hamiltonian H is a conserved quantity, the diffusion proceeds along a

constant H-surface, and we can reduce the diffusion equation to one dimension. We replace

the coordinates (pip_-) with (H,-y) and obtain the diffusion equation in the form

of 1 a of)
= T ((2.22)

09t -Yy

where
r WO o¢, / Z, \ 3/2 1/2=8 (1 - O~C2/L, '2 ) ( ;c2 )  f7.(.3

Note that while the problem has been reduced to one dimension, it is p-trameterized by

H. and Eq. 12.23) must be solved for the entire range of H-values important in any given
Iprohl,'n.

W, now rmust discretize Eqs. (2.22) and (2.23) so that they can be solved numerically.

The way in wich we have defined D-r implies that its derivative is everywhee zero except

5



on a countable set of points where it becomes infinl'e: hence, the discretization requires

great care. We use a finite element discretization approach which effectively averages the

derivatives, including the 6-functions, over a range in y..9 ,10 Multiplying Eq. (2.22) by

"yg(y), where g(y) is a weight 'unction to be made explicit shortly, and integrating over

the domain F (,min, wmax), we find

j (-Y d r - - -- f dl (2.24)

Where we have used integration by parts and particle conservation to eliminate the second

derivative of f with respect to 7y. Dividing the range I into N equal sized elements, we

nay write f as
N

f = Z fj(t)vj("Y), (2.25)
j=1

where the iYj(-f) are the basis functions for the elements, defined so that

(3, -Y 3 /(- zi,_, ,-Yi < 7 YiS= (+i - -)/(-,,+i - ^,,), -x, <: < N+, (2.26)
0, otherwise

Using the viv as weighting functions and defining the matrices A and B, such that

A 0 = g,,?,.i-d3,, BI -= -'-.-,'- dy, (2.27)

we find

A. -- = B f, (2.28)

where f indicates the vector consisting of the f1 . Since A and B are both tridiagonal,

Eq. (2.27) is not difficult to solve.

We have tested the code by rnning it for cases where the diffusion coefficient has

analytical solutions and found the agreement between numerical and analytical results to

be excellent. Ve have also found the number of particles to be typically constant to better

than one part in 10- 5.

C. Computational Results

In all our numerical calculations, we have taken the initial distrbution to be a 6-

function at 1 and we have varied our parameters over a wide range of wave ener-

gies. The parameter values we have chosen are consistent with the daytime and nighttime

6



su~- u t (1~iK Isl ) o In. theitse ciilCat iCs weS V have usedC~ 25G ptrticles. While

:t>~''.u:' r ,t~ir :1s nt ilt eoC to iv us a goo souion for th ov-eral11 evo-

.0 i:,t rilut. An :u nct ions, it is suffcent to allow us to solve for cruci al statistical

DavaninetCrs such -the average dlistance travelled by the electrons and the first two mno-

iunt-<- *) and :1 - 0)) where 70 , L>' initial y~value, equals one. XX e carry out our

ines for a length of time 2t 30. 000. which corresponds typically to travel distance of

iCCi20 lkm for the electrons.2

Fir, o olisidTr tHieC Cjfflsiof duie to a R-x mode with we/51- 1.97. oSO'. and

" 2,1.3. The va~i .4 '1 , 0.3 correspondls ao thle nig htt ime ionosphecre at 130 kmn. 1

P.C. r osil fIr the C(nCer Cof stochasticity is 6,11,s 0.2.

WAe -at rv out C1ii7r ()Illparis on fCor ave amlplit udes ranlgin g from 0.19 to 10.0. The

of >Several 'j'ianrtir es is 'lonin Fig. 1 for e,0.19. The quiantity ( -'.)2)

ti tucrease ii ail approximately linear jashion as expected froni the Fokker-Planck

FA. m tr. For this set of parameters, D., eventually b~ecomes very small. and ((-f - -Yo)')

htrp~ o. ut. but that (hoes not occur until Ut >> 3000. The quantity D/DQL , which is

the ratio of the orbit calculation of Q(~ , _ )2) to that obtained from the diffusion code,

dleviates~ Q~nificanitly from unity at earlier times but setls down close to its asymptotic

value for Q2t 750. The d~eviation from - u-. Anear b~ehev-:,r at early times is largely due

to twoC ectas. stickiniess and excess coherence due to a small number of resonances.' The

1juantities ', andl (z ;-, fj corr(c))Crnd to thle average (distance travelled for all the electrons

;1,11C on.'y t hose electrons Wvith 10. These two quantities becomne increasingly equal at

large ti-es as an inCT-Casiiig fraction of the eloctrons sur-pass the value -1 = 10. WXe can

es t lilat e t iie valule to IIe 2

.1nCil for aaifflv ,, laiivi.>tic elcCtroii-s. The solid hule iii Figs. ld-e is given by

_D.U.>.;,1 tne " 'i~ o in'liC;Ctc tllCC Clt all the electrons have become relativistic

Ux:;' fiwin V 0wtoK have, o1 > 10 is phaotewl ini Fig. . The cuTivs CItliewd ftim

i -1, tM r-.CC'Jj C. I,, ho 1t 1, , C(l(( (Ii Itted i lne) agree quite wvell. Similzar

;!--11oown ill g- 3 G f r wxave aniplit Cides given hvy 3.99 and e -10.0. The

a2Tmeti(clt )ilily inmroves in tfle) e .Ses. Ili Fig. 7, we show DIDQLinterge 01



10.0. The quasiluilear tteorv mnbo(Iiecd in our diffusion co(le evidently works well

,)ver this range.

We next consider the diff-_sion due to the L-o mode with /Q = 2.6, ( SO' , and

_'9 =0.3. The threshold for stochastic acceleration is giveii roughly by Etr 0.4.

Results for several d.Terent energies can be found in Figs. 8-10. In this case, a substantial

fraction of the e'ectrons are not stochastic even when the threshold is exceeded, and that

ias an important effect on D/DQL, (z', and (z)-,>iO. Nonetheless. the fraction of electrons

with -Y > 10 agrees well with both methods.

The results ,f our study of electron acceleration generr fly confirm the results obtained

ig simpler methods in reference 2. In pazticular, large intensities of roughly 20 \,/cm2

are needea to reach the ioquired stochasticity thresholds and acceleration disuance on the

order of 20 km are leeded in order to accelerate a substantial fraction of electrons beyond

5 .IeV. Ihe power requirement, appear to be well beyond what can be managed with

present-day devices. Other mechanisms based ui field inhomogeneities., pre-acceleration,

and precipitation of already high energy particles remain to be more thoroughly exp'ored.
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III. ALEVE:N MASER

A. Overview,

Thke Alfv~ n maser .- mraser). as first des-rihed by Trakhitengerts and co-wvorkers' 2 '

is basedi on enhiancing the reflect ivitv of the Alfv,-6n wave within a niarrow tube (10 km

A10 kin) alon12 the field lines in the inagnetosphere. This change in reflectivity could

be accomplished by i-f heating of the ionosphere in the region near the poles where the

rnaauiletic field lines are tiedl down. Trakhtongerts an(1 his colleagues focused primarily on

net liod(s for generating the ion cyclotron inst ability, as was appropriate for the problem

)t preclipitatin g relatively low energy ions which hie was considering. Our focus has been

the precipitation of higher energy ions and the exploration of resonant methods which can

aIccoMnniisl this prccip .itationi. Papadopoulos. ct al."4 have shown that tlme mechanisms

(iicu~eo)v Trakhtcntgerts and co-workers aire insu-fficienlt for this purpose for several

reasons. niamiely:

(i) No specific wa.ve m-ode that interacts strongly with energetic protons (6 > 1

NfeV) was identified.

(ii) The models rely oni (uasilinear wavepacket theory. As a result their applica-

bility is limiited to proton energies below 1-2 MeV.

(111) The transverse variation of the medium and finite ion gyroradius effects were

einored.

As a result. wve concentrated on scenarios which excite the highly localized (in. - oc)

poloidal oscillations of the mnagnetospheric cavity at the appropriate L value by modulated

RE heating of thi( F-region ionosphere. These modes are thought to be excited naturally

by inverted ion distribution functions,'15
.
1 6 electron beams, 17 surface wave-, due to the

IHelviln-Helmmi1holt z inst ability. 18,1 arnd/or external imipulses. 20 '' These are monochromatic

HleW lin1e oscillatins anid have often been observed in conjunction with energetic p)article

Torecipitarion. We l1,avr h,-ild lie process Field Resonance Induced Precipitation ( FRIP ).

NV~ th l t~l a. v-P 1,B S diiilltelv (1ifferciat thaii lie physics of tie Trakht-

n .X-lase . a ' i. l~ ia diffusion,. both ini the inodle exctio processes as

'veilis L .:';i~ . 'moss.Tip' liflCerices will he eip~szdlater on. The
twvo iiilporit;t. s'u relaLted to the feasibility of FRIP are,



(i) Identification and verification of the physics roekted to the induced energetic

proton precipitation.

(ii) The requirements and location for exciting the appropriate field line reso-

iiances

These are discussed in the next section.

B. Radiation Belt Dynamics

Before entering the discussion of the physics issued relatd to the FRIP concept we

briefly present the parameters that control the trapping and the precipitation of the ener-

getic protons in the earth's radiation belts. Figure 11 shows the trajectory of a trapped

particle in the earth's dipole field. Particles trapped in the earth's RB execute three types

of motions. First, a gyration about the magnetic field with the local gyrofrequency Q,

second a longitudinal motion governed by the effective potential energy,

ull = pB(s) (3.1)

where B is the magnetic field, s is the coordinate along a line of force and

V 
2 

2 o= V sin a (3.2)

2B 2B

is the orbital magnetic moment; a is the angle between the velocity v and the field B. This

motion results in the particle bouncing between mirror points along the field line with a

frequency 11;b. Tbird is a slow azimuthal drift. These motions are shown in Fig. 11. The

value of the magnetic field BE at the equator is given approximately by

.3
BE(L) = 13 gauss (3.3)

while the average value ot the gyrofrequency in the dipole field is given by

Q, = 2.E F(a) (3.4)
G(1)

10



where Q-E = 3 x 10'/L 3 sec - 1 , G(a) = 1.3-.56 sin a, and F(a) c (-0.2 sin 2 a+0.7sina+

2)/sin- a. In the absence of interactions, the magnetic moment IL is an adiabatic invariant.

The same holds true for the action

J=JV -ds

which is associated with the bounce motion. There is also a third adiabatic invariant, the

flux invariant . associated with the drift motion.

C. Induced Precipitation
Energetic protons will be confined in the radiation belts as long as their adiabatic

invariants are conserved. The rate at which protons enter the loss cone and precipitate

depends mainly on the time scale on which the adiabatic invariant J changes. Two general

types of processes exist. First, low frequency, random fluctuations will lead to a quasilinear,

diffusive random walk in J. Second, coherent fields can lead to resonant excitation and

stochasticity. It is this latter type of process which we are proposing to use, rather than

the former type proposed by Trakhtergents and co-workers.12 3

The guiding center of a trapped particle oscillates between its mirror points with a

frequency given approximately by

wb= 2.2 x'T(MeV) (
L (3.5)

In general, the magnetic field does not vary quadratically with distance along the field

line, leading to a significant anharmonicity in the bounce frequency. In other words,

.b = ,.b( 3 E), where 3 E is the particle's pitch angle at the equator, for particles with the

same value of T. However, this anharmonicity does not significantly alter the results and

does complicate the discussion. So, we ignore it here. Our equation of motion is given by

9 +w~s = 0 , (3.6)

which conies from the Hamiltonian

H1 = p., + mw2S 2 =0 (3.7)
2rn 2 b1

11



.Mlaking the action-angle transformation,

p, = (2_inc:b)" / 2 cos0 , s = (21/mwb)'1 2 sin0 (3.S)

the Hamiltonian becomes

Ho=wbI , (3.9)

with equations of motion

=0, 0=wb (3.10)

The presence of electromagnetic forces with components parallel to B. will change

the value of J. Forces parallel to B can be due to parallel electric fields Ell or due to

compressional magnetic perturbations bll. The latter represent a form of Fermi acceleration.

In the presence of such forces, the equation of motion becomes

2 eEj(s,t) &bil(s,t)+ Wb 9 (3.11)

The strongest interaction will of course occur for forces oscillating neax wb.

We now suppose that the fields are fluctuating with random time variations. Such

fluctuations induce random variations in the oscillation amplitude, causing a random walk

of a particle's J value and a redistribution of J described by a Fokker-Planck equation.

Robertc and Schultz 2 2 showed that spatial variations allow the oscillator to interact with

the fields at harmonics of the bounce frequency. However, the overall effectiveness of the

bounce resonance processes is reduced for oscillation amplitudes large with respect to the

scale of the spatial variations. For situations where y = const, the Fokker-Planck equation

describing the evolution of the distribution function f(Ell, ±) is

of (E) 0 9 '
( -D f (3.12a)

D = , 2-," (312b)

12



where sm, is the maximum value of s in the unperturbed oscillation, the J, are Bcssel

functions. and K is the relevant power spectrum. These relations can be derived from

Eq. (3.11) by using second order perturbation theory and defining D as

1< (Afll) 2 >
D = )>(3.13)

2 7

Of greater interest to us is the case where we may assume Ell(s, t) = E. cos(ks - :t).

In later sections, we will explicitly consider Alfvbn waves in which case

ks - j W--- ds' (3.14)
1.VA(S

1
)

and Eo becomes a weakly varying function of s. The effect is to add harmonics of the

fundamental wavenumber

Eo cos(ks - wt) E E, cos [(2n + 1)ks - wt] , (3.15)
n=0

which has little impact on the final result. Our equation of motion now becomes

2 e E,
g + Wb S = - cos(ks - wt) , (3.16)

Letting a = ks and r = Wobt, Eq. (3.16) becomes

=eEo k
ii ±a - E2 COS(0 - r) , (3.17)

where Q = /wb. This equation of motion can be derived from the Hamiltonian

_ a eEok

H = 2 + , + QR _neE sin(a - ) (3.18)
2 2 bw

where (R, ¢) are a canonical pair of variables. Making the action-angle transformation

q = (21)'/2sin9 , p = (21)1/2 cos0, (3.19)

13



so that in physical units I = (U - it E)k 2/rnw9,, where U is the kinetic energy and BE is

the magnetic field at the equation, our Hamiltonian now becomes

H =1+ QR- Esin [(21) ' /2 sin -0  , (3.20)

where 6 = eEok/m 2 which is, to within a phase, the well-known Hamiltonian considered

1)b Harney 2 3 in the context of rf heating. For a fixed value of e and Q, IKarney showed that

the orbits are stochastic in the range

Q2 -- Ei 1 2 < (21)1/2 < (4EcQ) 2 / 3(2/ir)'/3 , (3.21)

where the latter value holds exactly in the limit (21)1/2 > Q but yields a reasonable

approximation even when (21)1/2 ,- (2. An illustration of the stochastic region for a fixed

value of Q is shown in Fig. 12.

As an example, we find that if Q2 = 10, then the threshold for stochasticity is approx-

imately at E = 1; however, larger values are required to obtain significant acceleration. In

physical units, our conditions become

u; (eo w ) / ( 2T W2 )/ 2  (2'" 1/ eE0  w2 2/3
BVAE WB, \AELOBr r mWBVAE W) (

where VAE = VA at the equator. Writing

eE 0.01 Ea(mV/m)LS/ 2

MrWBVAE vT(Mev) (3.23)

32vE 3.3 [T(Mev)] L 3

we see that at L = 4, and setting as before Q2 = 5, a field of 7 mV/m is needed to achieve

= 5 for a 200 key proton. At this value of E, protons are stochastic if 30 < I < 430

and our 200 key proton has I = 42. We see that if E = 5 and Q2 = 10 are maintained by

ramping up the E-field and the frequency, a parallel energy gain of 10 is possible, leading

to precipitation of most 200 kev protons. One can think of many other possible scenarios

for precipitation. As will be discussed later, such fields can be excited due to finite ion

14



oyroradius effects when Alfv~n field aligned resonances are driven by periodic heating of

the F-region.

D. Geomagnetic Field Tube Oscillations

A number of authors2 - 26 have calculated the eigenfrequencies of magnetic field lines
for various distr.4utions of v along the magnetic field lines using the boundary condition

E(s = ±1) = 0. This boundary condition is correct only for sufficiently large ionospheric

conductivities. The resonant frequencies are independent of the conductivity only when

v.1(s) = const and the conjugate ionospheres are symmetric. In this case, the fundamental

resonance frequency c'0(L) is given by

Wo - -r (3.24)

where ro is the earth radius. A complete analysis using the inhomogeneous wave equation

was performed by Arykov and Maltsev. 7 The wave equation for guided Alfv~n waves is

given by

(92 E _ 1 a 2 tE\
2 - (s) -i0t (3.25)

In Eq. (3.25), the field curvature and the transverse dependence of VA are neglected. This

is correct for relatively small transverse dimensions. 2' The resonator properties can be

described by introducing the function A, defined as27

AE= B, IAP (3.26)

where A% is the change of the ambient electric field E, in the ionosphere if the Pedersen

conductivity varies from EPN by LsE in the northern hemisphere; Boi is the magnetic

field un tie ionosphere. Note that if A = 1, then AE equals the polarization field in the

modiqied area, on condition that there is vacuum above the ionosphere. Assuming that

hE varies periodically with frequency w, the equation describing the excitation factor A

;s

02 L.)
2

-2 A -+ W4 =0 , (3.27)
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with the boundary conditions

c 2  DA
+ =0 s=-l (3.2Sa)

4,ri Eps (9

c 2  (9AA+ = 0 s=+l (3.28b)

The function A depends only on the frequency and on the characteristics of the resonator

only. Equation (3.28a) gives passive reflection of the guided waves from the southern

conjugate, while (3.28b) describes reflection and generation. For the magnetosphere. an

analogous excitation factor AB defined by

c 1 B, x EAE
AB = -ABS (3.29)

VA Vo 2 1 PN (EpN

can be introduced. Following Arykov and Maltsev, 27 we approximate VA(S) by

VA(S) = VAE + 4) (3.30)

In this case Eq. 3.27 can be solved to give

A _ = 2 +- a2  2. e -- ' + R se
3 iuo+iuA =V2 25 1 7_N  '+ (3.31)

T2- a2 2 1 - RNRSe 4 iu(

where

N,S
RN,s = 77N,S (3.32a)

N,S c 2 l iaV/T + a2w2IVAE(

7 47ri wEpN,S 12 +a' (3.32b)

- 1 -- a /)AV arctan(s/a) , (3.32c)

uo= (s = 1) (3.32d)
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In order to analyze the situation further we note that using WKB thecry, we find

r 7Tr 4E (3 33)
To = d% 2aarctan(l/a)

where - is the frequency of the fundamental mode. We now introduce the inhomogeneity

parameter A = I/a and the ratio of the ionospheric conductivity to the wave conductivity at

the equator. a = Ep/E,, where E, = c2 /47rVAE. If A = 0, corresponding to a homogeneous

magnetosphere. we find

1-RN exp 1)]-- +Rexp i +3)

A - 2 (3.34)

1- RNRsexp 27ri

w here

RN,S ON(1 -N),/( ± N,S) (3.35)

Arykcv did Maltsev 2 7 calculate the value of A in the conjugate ionospberes. Our interest

here lies on the equatorial plane s = 0. The results are shown in Fig. 13, for symmetric

and antisymmetric ionospheres. The most interesting result is the one shown in Fig. 14

which shows the amplitude-frequency characteristic for AB = i(VA/W)(OA/Os). A strong

resonance is not possible on the odd harmonics, but only on the even ones, u. e., w = 2nw.

Using the simple model, VA = VA(ro/r)3/2, where VA, = 4.4 x 108 cm/sec is the Alfv~n

speed near the Earth's surface and r. is the Earth's radius, we find from integration of

Eq. (3.33) that w, = 6.8 x 10- 2 sec - 1 when L = 4. Hence, in the example of the previous

section in which w = 10wB = 2.5 sec - 1 we find that n _ 18.

E. Stability of the Shear Alfv~n Wave

In this section, we will show that the transverse mode structure can be determined

separately from the longitudinal structure and that the shear Alfv~n wave is stable. We

have investigated both diffraction and mode-mode coupling and shown that they are com-

pletely negligible at the low parallel mode numbers of the shear Alfv~n wave. Indeed, the

only limitation on the transverse size of the mode is that it must be large compared to an

ion gyroradius for the basic dispersion relation to be valid.

17



Our starting point is the equations

VxB=---K-E,
c (3.36)

V x E =- B,
c

where, assuming we have low frequency modes, but keeping higher-order cyclotron correc-

tions, we have

+ C 2(1+ W2 C2W 0
• 

2  
2I

K= C2W 0 (3.37)
AVA

where, writing E = (Ei, E2 , E 3 )t , El and E 2 are transverse to the zero-order magnetic

field and E 3 is directed along it. At low frequencies, E 3 is essentially zero for consistency.

To drive an appropriate Fresnel criterion for Alfv~n waves in magnetospheric flux tubes,

we first ignore geometric effects and obtain

1+ 1+c0 './

det V \A =0. (3.38)C 2 W+ C 2 + W 2) C2k 2

VA- T V A\/,

To lowest order in w2 /f2?, we obtain the dispersion relation

2 W2  W
2 W

2

V A= 2_ + ?_2 (3.39)

when k1 > kl as in the case in a confined mode. We then find that

- VA -" (3.40)
dk, Q2 I T

Thus, the more we reduce the transverse dimensions of the wave, the less it diffracts!

We conclude that diffraction imposes no limit on the transverse width of the mode. The

width need only be large enough to validate the dispersion relation, i.e., it must be large

compared to the ion gyroradius. This radius is roughly 10 m when L = 4. Hence, a

transverse width of a kilometer or more should be sufficient to provide confinement.

18



To investigate the effect of mode coupling, we first note that

=- =4 kTBo - 10- (3.41)U2

when L = 4. Hence, acoustic coupling is completely negligible. To consider coupling to

the magnetosonic wave, we write Eq. (3.36) in dipole (Radoski) coordinates. 2
1 It becomes

1 , . (is e - E) ±c + c) E0, (3.42a)(3, m - -E,, - -cE + + E,, (3.42a)

W 2 c
+ -- Ev,

~V2A
h 0 1= + )i E, (3.42b)o h, 0 U TO (hE A

LA)
2  c

+ --72 27E0,i V

1 0 iwh,, = -- B0, (3.42c)
hjh, 0 c

I E0 = w B,,, (3.42d)To hu 5 /1 c

where for any quantity, we have let

X , ,) = X( ) exp(isv + imdb). (3.43)

Defining now,

m s
m s (3.44)

R 2 = -LEo1 + V

so that R 1 corresponds to the magnetosonic wave and R 2 corresponds to the shear Alfv~n

wave, we find that

1 0 1 0 /h , O h 1 0 (m 2 hI -S 2h )
-h1A , V1 hArl

hpOj hp, Op ~ ~ ~, hA V~ mh ±sh

- 2 + ) hR 1  2 V.4 h l (3.45)

(ho 0h,,> 2 0 -msh~ho hpiR2 ,
hL, Olt h6, Jh2 Olt (S2 It + 7112 112 )
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where we neglect the vacuum and cyclotron contributions to Eq. (3.42). If either rn or s

is equal to zero. the magnetosonic wave is not coupled to the shear Alfvn wave. That is

because curvature induces a field pointed in the radial direction to produce a component

in the parallel direction while a field pointed in the azimuthal direction is not affected by

curvature. Coupling cannot be induced in either case. Noting that at low parallel mode

numbers all parallel derivatives O/huOpD scale as 1/ro, and assuming as well that kr 0 > 1.

where

tn 2  s 2

-L-= T- + h-- (3.46)

we find that

R, L(3.47)

where \j roughly equals the transverse width of the confined mode. Thus, the intensity

of the magnetosonic wave is a completely negligible fraction of the shear Alfv~n wave and

leads to negligible attenuation,

1IA 1A (3.48)

Thus, we may set R, = 0 and all dependence on m and s disappears in Eq. (3.42). We

may in principle determine the entire mode structure by solving one pair of equations, for

instance

1 9

hB,= -B--',,,

i6 (3.50)

1 h,: Be B,,

h,L h ,
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These results limply that the longitudinal and transverse p~arts separate and that the

transverse portion is substantially but not comipletely arbitrarv. From Eq. (3.49), we may

write a solution which satisfies a particular set of boundary conditions as

E0 p),(3.51)

The two functions y'(ji) and gb(ji) are determined fromr Eq. (3.49), which is purely Ion-

tudinal. Note that the transverse shape factor for E6 and B,. is necessarily the same.

Simil1arly. we may write

B0 -h'(JL)f 3(v, o). (3.52)

Our task now is to dletermine what constraints Eq. (3.50) imposes on the relationship

between f,, and fj. U'sing Fo~urier transform methods, we can --how that this equation

implies

a,(V &) f V ) (3.53)

and1. wvhat is more, Eq. (3.33) implies Eq. (3.50). Thus, we choose either f,, or f,3 arbitrarily,

b~ut the other ic then fixed to within a constant.

As an example, we may consider

= fo exp[-a(v - vo)2 _ 1)(0 o) (3.54)

'viili corresponds to a localizedl Alfv~n mode. It follows that

f3=b f,(3.55)
a

ot ha lhe re'lat lye 't rerngthi of the'se 'WO Shap)( faCiors Is, determined by the falloff of the

overall anipIlituide. EqIiiat ion 3.35) can be viewedl as a result of qutasi1-neutrality. In this

SO:O 
1 fE' wave(' hi iea rly p ,iai zed, buht. other polarizations result when N'e allow a andl

1) to hoI (- nJ lex . In parti~cu lar, i f we set
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U = A-., b 72 A, ( 3.56 )

we find that the resultin- wavc i circularly polarized. As a final plo;-it. we note that a

circularly symmeteric ,hape cannot in general be maintained along an entire Alfvbn tube.

To obtain a circularly symmetric shape at a single point, we demand that

x _ 1/2(3.57)

where a - and b h20 at that point. As h, and ho change along the field line, the

shape will become assymmetric.

We may thus determine the resonant frequencies by solving the one-dimensional Ion-

gitudirnal equations. In the W3KB approximation, we obtain the frequencies derived in the

previous section.

F. Kinetic Alfvii Wave and Proton Precipitation

The analysis presented in the previous two sections was based on MHD equations,

In the presence of trmnsverse gradients, the Alfv~n mode has a singularity. 18,19 For time

varying waves this effect is manifested in an increase in the transverse wave vector of the

wave described by 29

Ok _ w Ox _O5T=-T - (3.5s)

Un(ler magnetospheric conditions this increase in the wave-number occurs over a very

fast scale,3 0 so that the transverse wave-vector k, becomes larger than k11. In order to

8ccount for the transverse structure, non-ideal MHD effects must be incorporated. ' a,se

are the electron inertia (c/w') and the ion gyroradius Ri. Incorpurating these effects, the

dispcrsiori relation becomes 31

, = kj,(1 + k 2 ) .(3.59)

The v(l)ic ,f A ,lnptds (In tthe ion temperature. For colt ioiis. . < m, /rn,. and we find

r/_", whil, iII th- opposite liiit we find .4 -_ v" R,/2. In the latter case, a kinetic analysis

violds1
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A - Io(A,)exp(-A,) +  (360)
where A, =k 2 R,?2 =\2 T/T

e , S \,/Te and LT is the modified Bessel function of the first kind.

This wave is known as the kinetic Alfv~n wave (KAW). The presence of a weak transverse

dispersion produces a small group velocity across B, given by

ak± wk±A2  (3.61)

For k- _ (L/f2,) 1 /2k 1 , the presence of weak dispersion can trap the KAW near the mini-

mum of the transverse profile of t,, and produce an Alfv~n waveguide for the KAW similar

to the one discussed in the previous sections for the shear Alfv6n wave. Such a waveguide

can be produced by the plasmapause as well as by magnetospheric ducts. Notice that Pcl

pulsations have been interpreted as eigenmodes of such waveguides 3 2 '3 3

The presence of guided KAW modes allowed us to identify a new process that can

break the second adiabatic invariance of multi-Mev protons. The process relies on the fact

that the KAW has an electric field component E, parallel to the magnetic field. It is given

by
34

E [j aw'6SBi [k~x [1- I 2(k R2)e-kiR'1(Te/T) (3.62)

I< z1+ {1 - Io(k2R2)eki- (TllL

For (k±I?,) 2 < 1, T, < T,, we find

k2 2
E= kRi) (3.63)

Assuming, k±R, = 0.1 which is a reasonable value for the PcI pulsations, we find that

E± ,- 10 mV/cm in the example of section 3B. This field strength can be obtained from

ground-based transmitters.
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IV. EXPERIMENTAL REQUIREMENTS

A. Concept Sunmnary

The FRIP concept (Fig. 15) relies on injection of large amplitude ULF waves, gen-
erated by modulated heating of the ionosphere, into the geomagnetic force tube bounded
by the modified ionospheric area. If the modulation frequency equals one of the field tube
resonances or its harmonic, the plasma filled force tube behaves as a high Q cavity. As a
result the excitation level of its resonant modes (i.e., shear Alfv~n waves) increases sub-
stantially. The guided Alfv n waves are incompressive and their electric field is transverse
to the ambient magnetic field. However, magnetic field and plasma inhomogeneities, finite
ion Larmor radius effects and dynamics couple the shear Alfv~n wave, to a kinetic Alfvbn
wave (KAW). The kinetic Alfv n wave is also a confined mode in the presence of plasma

ducts.

The KAW has an electric field component parallel to the magnetic field. When the
value of the parallel electric field in the equatorial region exceeds values of mV/m protons

with Mev energy become strochastic (i.e., their second adiabatic invariant is broken) and

can thus precipitate.

The requirements for breakdown of the second adiabatic invariant and induced proton

precipitation can be approximated by

Wb = 2nwo (1)

Mn 2E, > WbLRE (2)

e

where E, is the parallel electric field of the KIAW, wb is the bounce frequency of the

precipitated protons, w, is the fundamental frequency of Alfv~nic oscillations of the field
line with fixed ends, n the harmonic number, RE the earth radius and L the magnetic shell
number. If we assume a simple model of the equatorial values in the radiation belts

B= .3 -- G (3)

n' =5X104 1L41
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and take

L~ AleX" (5)L.' . I e V/

We can express (1) and (2) in a quantitative fashion. The value of n required for precipi-

tating protons of energy T(MeV) at a value L is given by

n = - (6)
5.5 MeV

and the associated value of E, is given by

E > 4mV/im (7)Lo > -',- ,v )

Figure 16 gives the value of f0 = wo/27r as a function of L for the model given by (3) and

(4).

For example, in order to precipitate 1 Mev protons at L = 6 we should drive the shell

at its fundamental frequency fo .03 Hz, with sufficient strength that the value of E,

at the equator exceeds 2 mV/mn. To precipitate 4 Mev protons we should drive the field

at its second harmonic, i.e., .06 Hz, and the required value of Eo would be 8 mV/m, etc.

The practical implementation of the system depends on the efficiency with whirl, ground

based HF power can be converted into KAW power in the magnetospheric cavity. This is

examined next.

B. System Requirements

In terms of implementing FRIP, the major issue concerns the efficiency with which

modulated HF power injected in the ionosphere is transformed into power in the KAW

in the equatorial region. We present below estimates based on modifying the ionospheric

con(luctivity of the lower ionosphere (D-E region) (Figure 15).

For a dipole magnetic field the value of AE of the electric field in the equatorial plane
is given ixv

1 1 A1
AE _ .4 E,Cos3 V L3/ 2 -EP-
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where E, is the ionospheric field, p the latitude and A is the amplitude frequency char-

acteristic of oscillating tube of force with allowance for the resonance properties. (A

1-10). The value of the height integrated Pedersen conductivity EP varies from .1 mho

for night time conditions to 1-10 mho during daytime conditions. The value of E" is

of the order of 25 nV/m in the high latitude ionosphere and reaches values of 100-150

mV/m during substorms. It is obvious that night time conditions are favoied. Values of

L E_ - 10 mV/in compatible with threshold require values of AE .1 mhc. mnis implies

an energy deposition into electrons of 1015 eV/m 2 per ULF P, iod. For an area of 25 km 2 ,

the required energy deposition to electrons will be -f the order 1-2 kJ. Since the frequency

is of the order of a second, the required power absorption by electrons will be of the order

of 1-2 kW. Given the inefficieny ot long time electron heating in the D-E region it will

require an HF facility with 1-2 MW ground power operating in the 4-7 MHz region.

C. Kzy Research Issues

1. What is the value of the electric field generated in the region for frequencies in the

range .01-10 Hz as a function of the HF power density and frequency and ambient

conditions?

2. What is the Q value (i.e., value of A) for the magnetospheric shell cavity modes and

their harmonics?

3. What is the conversion efficiency from the shear to the kinetic Alfv~n wave in the

equatorial plane?

4. Are there any feedback effects due to the enhanced precipitation?

A combination of satellite and/or ro-ket -xperiments in conjunction with the operation

of a strong high frequency (i.e., 5-12 MHz) heater can provide quantitative answers to

these questions. Preliminary experiments can be performed using the Tromso Max Planck

facility. However the planned HAARP facility could be a good instrument to investigate

the FRIP concept.
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FIGURE CAPTIONS

1. Time evolution of various quantities for w/!Q = 1.97, wp/Q = 0.3, a = 800, and

E = 0.19. The wave is an R-x mode. The unmarked lines in d and c are obtained

assuming v. = ntlc.

2. Time evolution of F(b > 10). Time evolution of various quantities for w/f! = 1.97,

L)/Q = 0.3, a = 800, and c = 0.19. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

3. Time evolution of various quantities for w/Q = 1.97, w/Q = 0.3. a = 800, and

= 3.9. The wave is an R-x mode. The unmarked lines in d and c are obtained

assuming vz = nlic.

4. Time evolution of F(6 > 10). Time evolution of various quantities for w/Q = 1.97,

w;/Q = 0.3, a = 80', and e = 3.9. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

5. Time evolution of various quantities for w/ = 1.97, wp/f2 = 0.3, a = 800, and

= 10.0. The wave is an R-x mode. The unmarked lines in d and c are obtained

assuming v, = nic.

6. Time evolution of F(b > 10). Time evolution of various quantities for w/ 2 = 1.97,

wp/f2 = 0.3, a = 80 °, and e = 10.0. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

7. D/DQL as a function of wave amplitude. The scale of the x-axis is linear but the scale

from 0.19 to 0.99 is different than that fron 0.99 to 10.

8. Time evolution of various quantities for w/Q = 2.6, wL/Q = 0.3, a = 800, and

= 0.427. The wave is an L-o mode. Some particles are accelerated in the negative

z-direction and the approximation v, = nilc, given by the unmarked line, is no longer

adequate.

9. Time evolution of various quantities for w/Q 2.6, wp/2= 0.3, a = S00, and E = 3.9.

The wave is an L-o mode. Some particles a, e accelerated in the negative z-direction

and the approximation t,, = nic, given by the unmarked line, is no longer adequate.

10. Time evolution of various quantities for w/Q = 2.6, wP/Q = 0.3, a = 800, and E = 10.0.

The wave is an L-o mode. Some particles are accelerated in the negative z-direction

and the approximation vz =nlic, given by the unmarked line. is no longer adequate.
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11. Schematic illustration of particle motion in the Earth's ionosphere.

12. The limits of the stochastic region of velocity space for SI = 30.23. The crosses give

the numerically observed values [adapted from Ref. 23j.

13. Amplitude-frequency characteristics at the equatorial plane, assuming a) a symmetric

ionosphere, b) an assymetric ionosphere [adapted from Ref. 27].

14. Amplitude-frequency characteristics for AB at the equatorial plane, assuming a ho-

mogeneous magnetosphere and a symmetric ionosphere [adapted from Ref. 27].

15. Shown is a schematic illustration of field resonance induced precipitation. A standing

kinetic Alfv~n wave has a component parallel to field lines and resonant with the

electron bounce motion which induces precipitation.

16. Frequency vs. length for a simple field model.
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Nature of the Diffusion above the Chaotic Threshold

H. Karimabadi, C. R. Menyuk(" )

Deaprtment of Electrical and Computer Engineering
University of California, San Diego, California 92093

Abstract

The diffusion coefficient for particles in a magnetized plasma and in the presence of a coher-

ent wave was calculated numerically. The results were compared with the solution of a diffusion

equation based on the quasilinear theory. The ratio of the numerical to the quasilinear diffusion

coefficient D/DQL was found to be between 0.9 and 1.4 for wave amplitudes sufficiently above the

stochasticity threshold. No coherent oscillation of D/DQL as a function of wave amplitude was

observed. The above results held up in all of our parameter study.

(a) Department of Electrical Engineering, University of Maryland, Baltimore, Maryland 2122S.
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The quasijinear theory' and its domain of validity has remained an area of active research d:e

to its reievance to so many different areas of physics. Recent advances in nonlinear dynamics have

revealed that even systems of low dimensionality can exhibit complex behavior. Thus, more recent

tests of the quasilinear theory have been for systems of low dimensionalities. Using the standard

map to model a chaotic system, several authors2 found that the true diffusion oscillates about the

quasilinear value as a function of the nonlinearity parameter with the discrepancy between the two

reaching as high as 2.5. The key question is how much of tht; discrepancy is due to the nature of

the approximations made and how much is due to the limitations of quasilinear theory. In this

letter, we consider the validity of the quasilinear theory in a physical system. We investigate the

problem of particle diffusion in a magnetized plasma and in the presence of a coherent wave. We

derive a diffusion equation and model the diffusion coefficient based on the resonance broadening

theory3 . We have developed an algorithm that allows a rapid and accurate solution of the diffusion

equation. Thus we have been able to carry out a detailed study of the particle diffusion and its

comparison withe quasilinear theory.

In a magnetized plasma, there are many resonances given by w - kivil = 102 /-. When the

wave amplitude is small, the resonances are s parated and the particle motion is integrable. As

the wave amplitude becomes larger than a certain threshold, the adjacent resonances overlap and

particle motion becomes chaotic4 and can in turn be desribed by a diffusion equation. We start our

analysis with the usual diffusion equation in 2-D that is averaged over the groangle. The solution

of the 2-D diffusion equation is in general difficult and comput-.tionally expensive. It has, howevr.

been shown' that the particles follow the constant Hamiltonian surface in phase space. Thus by

transforming to a coordinate system that has the Hamiltonian as one of the axes, we can further

reduce the diffusion equation to I-D. The decorr -ion due to stochasticity is incorporated into

the diffusion coeeficient by means of the resonank.... roadening theory. The usual delta function

associated with each resonance in the diffusion coefficient is now replaced by a box having a width

of 2--, and a height proportional to / where wb is the bounce frequency. The resulting diffusion

equation is:

af 12 49 f(la)

a t -1 a7 07 , -1

49



where

In the regions where resonances o.erlap, the height of the boxes ad(". The resulting di'1sir

coefficient is quite bumpy as shown in Figure 1 and we use the finite element technique to soive

the diffusion equation.

W2 have tested the code by running it for cases where the diffusion equation has analytic

solutions and found the agreement between the results of sin'uiation and analysis to be exce.ent.

The number of partic.les are typically constant to 1- 2tter than one part in 10 - .

In order to test the quasilinear theory, we have solved the diffusion equation for many different

parameters and compared the results with exact orbit calculations. We take the initial particle

distribution function to be a delta function centered at -t = 1. In the exact orbit calculations. we

follow the -rbits of 256 particles, all with initial -t = 1 and phases distributed uniformly between 0

and 2., up to Lt = 3000. The reason for the choice of the integration time is made clear below. The

resulting ostribution function is very bumpy due to the small number of particles used. To obtain

smooth distributions, millions of particles would need to be used - an approach which is both both

impractical and unnecessary. Instead, we compare the moments of the two distribution functions.

rhe small number of particles which we use is sufficient :i this case to yield an accurate result. In

what follows, we use the quantities < -f - 70, >-< A7 > and < (-t - 70)" >-< (A7)2 > to mrakE

the comparison, where -y. is the initial -f of the particles and the brackets indicate an average oer

the initial conditions:

< (7 - 7)2 >_ f0 (- -y.)2f(-f, t)d-)

ff(yt)dS

Note that D1, ct< (/,)2 >.

We present the results for two sets of parameters: First, we consider the diffusion due to a

R-x mode with w/f = 1.97, a = 800, and w,/f! = 0.3. The values of stochasticity threshoid

£Lhr, calculated from analysis and simulations are 0.19 and 0.143, respectively. We carry out our

comparison for wave ampltudes ranging from 0.19 to 10. The variation of several quantities as

functions of time are snown in Fig.2 for ( = 0.19. The quantity < (A7) 2 > is seen to follow a linear

increase in time in accord with the underlying assumptions built into the Fokker-Planck equation.

The particles have not had enough time to sample all the available resonances and as a result ,he
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quantity < (A 7 ) > increases with time. Once the particles reach the energies beyond which D-

becomes very small, the < (A1)2 > flattens out as a function of time and diffusion stops. Fo the

parameters of Fig.2, the flattening out does not happen until f2t > 3000.

The quantity D/DQL which is the ratio of the exact orbit calculation of < (A) 2 > to that

obtained from the diffusion code, deviates significantly from unity at early times (Fig.10c) but settles

down close to its asymptotic value for it Z 750. This is expected since the diffusion formalism is

strictly valid for times long compared with correlation time scales. Similar results were also seen

at higher amplitudes.

The deviation of particle motion from the predicted quasilinear diffusion at early times can

occur due to at least two effects: First, there can exist small but finite islands of stability within

an otherwise stochastic phase space. A particle coming close to such an island can get temporarily

trapped. Such stickiness in phase space can obviously have an effect on the diffusion of the particles.

As it turns out, however, this effect is not that important in general and does not play a significant

role for Pt Z 750. As we mentioned earlier, the trapping width increases as a function of harmonic

num ber and in the transition to global chaos, the border of chaos lies at the lowest energies. Since

we start the particles at -y = 1, and the stickiness is most important at the border of chaos which

is also at - - 1, the particles often experience some initial stickiness; however, once the partiLles

reach the higher energies, they diffuse freely. Thus, there exists a finite time before all the particles

can diffuse freely. The second source of deviation from the predicted quasilinear behavior is that

the particles may initially sample a few resonances in which case the motion is closer to a coherent

acceleration than diffusion. The first effect results in a retardation in the diffusion and the second

effect leads to diffusion larger than DQL. The balance between these two effects determines D/DQL

at early times. For fQt Z 750, the above two effects become much less important.

We have plotted < -f > / < 7, > and DIDQL at Pt = 3000, for a range of wave amplitudes

as shown in Fig.3. The quasilinear theory appears to be quite adequate in describing the particle

motion over this rather large range in wave amplitude. For E > 10, the particle motion approaches

the integrable regime of unmagnetized plasma in which case the diffusion equation would no longer

be valid. The deviation of D/DQL from unity as a function of wave amplitude has a sporadic

behavior and does not seem to follow a nice oscillating pattern. In short, we have found no evidence
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for oscillations of D/DQL as a function of wave amplitude, in contrast to earlier studies based on

the standard mapping-. Furthermore, the fluctuation amplitude of D/DQL is much smaller than

that seen in previous numerical work. The presence of resonances of different sizes clearly leads to

averaging beyond that which is found in the standard map and thus to a closer correspondence to

quasilinear theory. These results suggest that the standard map is not an ideal paradigm for real.

physical systems.

Next, we consider the diffusion eqn due to the L-o mode with /fQ = 2.6, a = 80', and

wp/fQ = 0.3. The value of threshold based on analysis is 0.42, and the wave amplitude necessary to

accelerate 1% and 60% of the particles stochastically from zero energy is 0.4 and 0.75, respectively.

The quantity < A7 > / < A-, >QL is well below unity for c = 0.43 and it does not reach unity

until the wave amplitude has been increased to E - 1.5. For c 1.5, the < A7 > / < A- >QL has

small fluctuations about unity. The < AY >QL was obtained by using H = 1. Phase effects are

important for the L-o mode and the (thr, depends strongly on the value of H which has a finite

range even for -t = 1. The Cihi, can change by more than a factor of 3 depending on the value of II.

Thus, we must take into account the fraction of particles that are not stochastic at a given wave

amplitude. The ratio of stochastic particles is ,- 60% at c = 0.43, - 75% at C = 0.8, - 80% at

c = 1.1, - 93% at e = 1.3, and - 99% at e = 1.5. This is why < A 7 > / < Al >QL is below unity

for c £ 1.5. Let us denote the integrable particles by the subscript 'int' and the stochastic particles

by the subscript 'st'. What we should really be plotting in Fig.4a is < A-7 > / < A7 >QL and

not < Ay > / < A7 >QL. But < y >,t /< y >QL ,+ < > / < "/ >QL, where xc

have assumed < 7 >,,t / < Y >QL< 1. Using the values of Nse cited above for various E's, it then

follows that < A7 >,t / < 1A-, >QL is indeed very close to unity. In short, the discrepancy between

< Ay > and < AY >QL in Fig.4a for c - 1.5, is due to the fact that we have included integrable

orbits in < 7 > but not in < A-/ >QL. The fraction of stochastic particles can be easily calculated

analytically by incorporating phase effects in the expression for the stochasticity threshold. We

then find that stochastic particles are well described by the diffusion code.

The agreement between D and DQL is again very good for a large range of wave amplitudes

as shown in Fig.4b. This is encouraging considering that the theoretical analysis presented in t-is

paper are at their worst for the parameters in Fig.4 where the phase effects are important and H
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is not just confined to one value. Thus, we conclude that the diffusion formalism is quite robust

and is highly accurate in predicting the tine evolution of an ensemble of particles.
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Figure Captions

Figure 1. Diffusion Coefficient. The parameters used are wp/f2 = 0.3, w/fQ = 1.97, a = SO',

and c = 0.19. The wve is a R-x mode. Only the diffusion coefficient between

-y = 1 and -y = 40 is shown.

Figure 2 Time evolution of various quantities for w/Q = 1.97, wp/f = 0.3, a = 800, and

E = 0.19. The wave is a R-x mode.

Figure 3. The variation of < A7 > / < AY >QL and D/DQL as functions of wave amplitude.

The waves are R-x modes with w/fl = 1.97, a = 800, and wp/f2 = 0.3. The scale in

the z-axis is linear but the scale from 0.19 to 0.99 being different than that from

0.99 to 10.

Figure 4. The variation of < A& > / < A7 >QL and D/DQL as functions of wave ampLi-

tude. The waves are L-o mode with w/Q = 2.6, a = 800, and wp/P) = 0.J. The

discrepancy between < Ay > and < Al >QL for c < 1.5 is due to the presence

of integrable orbits. If we exclude the integrable orbits in calculating < Ay >,

we once again find an excellent agreement with the diffusion code. The fraction of

integrable orbits can be determined apriori analytically. The scale in the z-axis

is linear but the scale from 0.43 tp 1.5 is different than that from 1.5 tp 10.
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A Fast and Accurate Method of Calculating Particle Diffusion:
Application to the Ionosphere

H. Karimabadi

Institute of Geophysics and Planetary Physics,
University of California, Los Angeles, California 90024

C.R. Menyuk (a)

Science Applications International Corporation
1710 Goodridge Drive, McLean, Virginia 22102

Abstract

Electron acceleration by a wave propagating obliquely in a magnetized plasma is considered.

For wave amplitudes above the stochasticity threshold, the motion of electrons is diffusive. A test

of a simple diffusion formalism is presented. We reduce the diffusion equation to a 1-D form by

transforming to a coordinate system that has the Hamiltonian as one of the axes. We present a

model for the diffusion coefficient and solve the resulting diffusion equation by means of the finite

element technique. The results are compared with numerical solutions of the orbits. Finally, we

apply our results to the problem of electron diffusion in the lower ionosphere.

(a) Permanent Address: Department of Electrical Engineering, University of Maryland. Baltimore,
Maryland 21228.
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I. Introduction

The problem of charged particle acceleration by waves is of fundamental importance in plasma

physics and plays a central role in the understanding of many processes in space physics. In an

inmagnetized plasnia. the motion of a charged particle interacting with a plane wave is very simp!e:

there existc at most one resonance and the system is integrable. The trapping width is proportional

to 1/ 2 where c is the wave amplitude. The particle motion can then become random only if there

exist several waves with amplitudes and frequencies such that the trapping width of adjacent waves

overlap. In other words, tne condition for the particles to be stochastic is for the bounce frequency

6 in the potential well of each wave to be larger than the spacing between the adjacent resonances

;b > Aw. The evolution of an ensemble of particles can then be described by the quasilinear

(diffusion) equation [Vedenov, Velikhov, and Sagdeev, 1961; 1962; Zaslavsky, and Chirikov, 19721.

Conversely, when the wave amplitudes beconie large enough to satisfy the condition w6 > N,,Aw

then the stochasticity disappears as the effect of individual resonances would be washed out and

the particle would see a single potential well with slowly varying parameters. Here N" is the

number of waves in the wave packet. Thus, the condition for the validity of the quasilinear theory

is NAw > wb > Aw.

The presence of a static magnetic field changes the particle motion in two import'nt ways:

(1) particles can resonate with the harmonics of the gyrational motion, (2) resonances can occur

even if the wave has a phase velocity larger than the speed of light. The resonance condition in a

magnetized plasma is w - kllvl1 = efM/-, where f = 0, ±1, ±2,..., and fQ = IqIBo/rnc. The trapping

width associated with each resonance is proportional to 1 /2 . As long as c < 1. the neighboring

resonances are well separated and the particle motion is periodic. At a critical value of the wave

amplitude referred to as the stochasticity threshold [e.g., Lichtenberg and Lieberman, 1983], the

adjacent resonances overlap and the motion becomes random or chaotic. The particle can then

sample several resonanceb and gain large energies in the process. In this case, the motion of the

particle can still be described by the quasilinear theory even though there is only one wave present.

The general problem of single particle motior, under the influence of an obliquely propagating

plane wave has been treated in a series of papers by Karimabadi and collaborators [Menyuk, et

al., 1987; 1988; Akimoto and Karimabadi, 1989; Karimaoadi, et al., 1990]. The main result of
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these single particle studies has been the realization that for waves with Nil < 1. the Hamiltorian

surfaces become topologic, -iy open, thus allowing large particle acceleration. Here. .N., is the

-efractive index parallel to the magnetic field. In this paper, we derive a diffusion equation that

describes the evolution of particle distribution function for Aave amplitudes above the stochasticitv

threshold and N), < 1. The generalization of our work to the case of Ni > 1 is trivial. We reduce

the diffusion equation to 1-D by transforming to a coordinate system with the Hamiltonian as one

of the axes. We then present a model for the diffusion coefficient and solve the diffusion equation

using the finite element technique. This algorithm is found to be very fast and accurate. The

solutions of the diffusion equation are compared with exact numerical solutions of the orbits. The

conditions under which the diffusion formalism breaks down are discussed.

The techniques and algorithm expounded in this paper are quite general and are likely to find

applications in many problems in space physics and astrophysics. We have already applied the above

techniques successfully to the problem of par .icle acceleration in cometary shocks [iKarimabadi, et

al., 1989] and in supernova remnants [Karimabadi, 1989]. In section [VI], we briefly apply our results

to the problem of remote acceleration of ionospheric electrons from ground based radio transmitters.

Accelerated electrons could be used to create an artificial aurora, to probe the magnetosphere. and

to measure the cross section of ionospheric constituents interacting with energetic electrons. We

find the power needed for stochastic electron acceleration to be beyond the present day capabilities.

We propose ways to overcome this problem. We present our conclusion in section VIII.

II. Test Particle Results

in this section we describe the formulation of the resonance overlap criterion which we use to

determine the acceleration threshold. More details can be found in Karimabadi, et al. [19901.

In general, we assume that each electron is moving in a homogeneous magnetic field and a plane

wave propagating obliquely to the -nagnetic field. This plane wave can have both electromagnetic

and electrostatic components. We thus write the particle H~amiltonian as

r \2 1/2
H = {(cP - qn) + m.cJ + q'D = r c + qP. (lal

where

A .4 -klsin -t- A,, cos ?4v - Al L+iLW1+XBJE=.ml-XBo, (Ib)
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4) = Do sin i,' (Ic)

and

, = kLx + k1lz - wt. (Id)

Although we are primarily interested in electron acceleration, we keep the charge q arbitray in the

derivation of the equations. We next use a series of canonical transformations and the techniques

of Hamniltonian perturbation theory to reduce the Hamiltonian to the form

H _ H0 + H 1 . (2)

The zero-order Hamiltonian is given by

Ho = rnc2 Yo - WPI, '3a)

where

+ P1 2 + 2 1/2
"70 = 1 2 m-'i'l+"a (3 b)

The quantities p± and P1l represent the momentum perpendicular and paralle! to the magnetic

field. The surfaces of constant H, are elliptic in p1l - p± space if Nil > 1, hyperbolic if Nil < 1 and

parabolic if Nit = 1. Equation (2) is derived by expanding in powers of the wave field: it is consistent
with this expansion to take p± and P1l to be purely mechanical. The first-order Hamiltonian is given

by

E1 = Ztsin (kllz + O), (4)

where 0 is the gyroang1e and

Ze= MC (I 1 sina-q coa

7' Iql mc Jql kc J

J, (kip) + c2L-'J, (kip) + 7o-(3 J (k-p) , a)
mc jqj

with

m 2 jJA (5b)
" 

2  
meW'
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-7j2 C 2 
5c)

f3 Iq11 - • 5d)

rnc 2 
- rtcj'u

Here, the quantity a is the angle of wave propagation with respect to the magnetic field, q is the

electric charge, and Q is the magnitude of the nonrelativistic gyrofrequency. The explicit time

dependence in the original Hamiltonian of Eq. (la) has been absorbed into the z-coordinate of

Eq. (4).

Resonances occur when kl 1i + Id = 0, or

k1 P Q= 0, (6)

M7 0  70

a result which can also be obtained from standard, linear theory. It can be easily verified that the

resonance surfaces are elliptic (hyperbolic) when the H-surface is hyperbolic (elliptic). Typically,

for a given value of f and H, there will be only one pair (P±,PI!) which satisfies Eq. (6). It is this

case which we are interested in treating. In some cases, it is possible for Eq. (6) to be satisfied for

every point (p±,p1 1 ) on the Hamiltonian surface in phase space. In these cases, special methods of

treatment are required [Karimabadi et al., 1990J. We will not discuss this issue in this paper.

If the wave amplitude is small, then an electron will be affected by at most one resonance. In

this case, all but that single resonance's contribution to the Hamiltonian can be ignored, and the

Hamiltonian becomes

H = H,(pI1,p, ) + Ztsin(kliz), (7)

where z has been redefined to absorb M9. In this re-defined coordinate system, the resonance occurs

at a point (p1 ,,p_-,) where 0. Writing

I,102"H,, (p ; ,2
to(PtP-) H.(p1 r,Pir) + 1 Op-T  ,

2 1<r (P1l - 1)!I,)

letting

m - 7 , 9)
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and absorbing the constant H,(Pjj,,PIT) into H. the Hamiltonian becomes

= (P11- PmT) 2 + Zsin(k;;z), (10)

which is the pendulum Hamiltonian. The trapping half-width and the bounce frequency are then

given by

Apt- 2[MZIj1 /2 . (11)

and zl z1l/2

S I '1/(12)

respectively. The trapping width in -f can be easily found from Ap;I:

=- AN (13)

The trapping half-width given by (11) is independent of the initial phase. This is due to our

approximation of the Hamiltonian near a resonance by the pendulum Hamiltonian. The phase

dependence of the trapping half-width is mainly due to the Pll component of momentum and the

electrostatic component of the wave. If c 0 0, the phase dependence of the trapping half-width

becomes increasingly important as a - 900. The above analysis can be easily generalized to include

the effect of phase on the trapping width (Ginet and Heinemann, 1990). One then ends up with

an equation for the trapping half-width that can in general only be solced numerically. This is not

very useful to us and we use (11) in this paper.

It is important to note that the term "trapped" has a very specific meaning: it refers to orbits

close enough to resonance condition so that the sum over all the harmonics can be replaced by a

single term in the sum. The particles not very close to the resonance can still be accelerated, but

the acceleration is much less effective.

In deriving (11) and (12), we have explicitly assumed that a $ 900. For a = 90', most of

the steps that led to (11) remain the same. The only difference comes in eliminating the time

dependence in the Hamiltonian: the transformation F2 = p'j[Z - L,,t/kll is replaced by F, =

P'j( -... t/k). It is then easy to show that the trapping width is still given by (13). The only

difference is that for a = 90 ° , pi, is a constant of motion and is determined a priori from the initial

conditions. The sensitivity of the trapping width to pll and thus to the initial phase at a - 90' is
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not surprising since the term E(sin ,)/N 1 in H becomes very !arge as a - 900. The Hamiltonian

of a particle initially at rest can then have a large range of values depending on the initial phza.e.

For a - 900, P1l is still given by the solution of (3a) and (6) but with 110 replaced by 1I and V!,

replaced by the canonical momentum. If el = 0, the trapping width becomes less sensitive to the

initial phase.

The separation on an H-surface between two adjacent primary resonances is

6 mc 2flk 11  (14)

[ - W 2 - k2c 2

The stochasticity threshold condition based on the overlap criterion (Chirikov. 1979] then reads

2 = 4 Z' 1. (15)
6P11

As long as the resonances do not overlap, an electron in the neighborhood of the resonance i can

change in P1l by at most 2Apll. Once resonances overlap, the electron can jump from resonance

to resonance and in this way gain large amounts of energy. We can determine in this way the

threshold wave intensity to accelerate electrons originally at rest to 10 Mev or more.

III. The Diffusion Equation

There are two equivalent ways of deriving the diffusion equation. The first, where the ef-

fects of particle moion on the imposed fields are neglected, leads to the Fokker-Planck equation

[Chandrasekhar, 1943; Romanov and Fihippov. l0,1; Sturrock, 1966]

Of 0 AF i a2 (A)I-7=  0 -((:-7 ) ) + - 0' - "f)

9 102,
= - (Bfi) + -- , D), 16a)

where

B= lim (A 16b)iat-oc t

D= lir= ((AT 2n l6c

and where th brackets indicate an average over initial conditions. In the derivation of 1 6,a), iL is

assumed that: (1) The change in velocity Au in a ti...c interval At is such that (Av) and (u',, 2)
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contain contributions linear in At: whereas, all higher products have expectation values that vary

as a higher power of At and are therefore neglected. (2) The trajectory which a particle follows

depends only on the instantaneous values of its physical parameters and is entirely independent of

its whole previous history (Markovian assumption).

The second derivation of the diffusion equation is based on the quasilinear theory [Vedenov,

Velikhov, and Sagdeev, 1961, 1962; Drummond, and Pines, 1962]. They conclude that:

af a 0f- a . (17)

at V av

The diffusion equations (16a) and (17) are equivalent since the friction and diffusion coefficients in

the Fokker-Planck equations are related by

1dD
B = --. (18)

2 dv

The Hamiltonian (la) is a function ofp1 l and p, and it is thus convenient to start with the relativistic

diffusion equation in cylindrical coordinates

o9f 1I a a 01O tP j p ±- 1p1 p i( a + D ± ± )f

+Pa (D1111 a + DIIL- ) f ] (19)

where

D1111 = dir(Pjl(t)Pjj(t + r)), (20a)

D = dr(P±(t)Pi±(t + r)), (20b)

DIL = j-LI = dr(P±(t)pFl(t + 7)). (20c)

In (20), the angular brackets indicate an average over the initial coordinates:

(2r/k; dZ 2 d O .  
(21)(A ) = ki ? 2 r f o 4 2 -,r

Equation (19) is averaged over the cylindrical angle 0 which becomes randomized on timescales

much faster than the relaxation times of distributions in P1l and p±.
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Integrating over the unperturbed orbits we obtain

D1111 = :kil" z t 2
b m D,1 1,'1, .22a)

== -oo =

D lDO
-k f2 e L ; - Z L

2 mE _- -

D-L11 = Dl.. =k 1 mfl > -Z12 w ;;;; -- ) -- Z D± , (22c)
2 1= 0 

_t=-0

where 6(x) is the usual Dirac 6-function. These diffusion coefficients are not useful as they stand

because in their derivation we did not take into account the decorrelation due to stochasticitv. In

order to overcome this problem, we use a nodified form of resonance broadening theory [Dupree,

1966] as given below.

A. Diffusion Model

The 6-function in the diffusion coefficients came about when we substituted unperturbed

orbits in the -ight hand side of (20), which then implies incorrectly that if the particic is in resonance

with the wave, it will maintain resonance indefinitely. We showed in previous sections that the

resonance width is indeed finite and is given by (11). The finiteness of the trapping width is due to

the fact that kl$l 0 If2 4/y 2, and, thus, the particle is shifted from exact resonance by the wave.

It can be easily shown that the decorrelation time or the shift in the resonance condition due

to the finite trapping width is roughly 2L.;b in the i-th resonance. Thus, we replace the 6-function

by a function f(x), where

1/4wb, if XI < 2 wb
f(z) = , x > 2wb

The quantity wb corresponds to the bounce frequency (12) in the eth resonance. Note that

J f(x)dx = + 6(z)dx = 1.

This spread is equivalent through the order to which we are working to the spread in pI, calculated

in (11).

B. Reduction to 1-D

Because H is a conserved quantity, the diffusion proceeds along a constant H-surface. It

is then useful to replace the (pi,p±) coordinate system with the (H,y ) coordinate system, which
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reduces the diff',sion equation to one dimension. The details are given in the appendix and the

diffusion equation reduces to

a= f -- D-y-} (23a)

where
T0 Z /2D-r I (I - N2 )11 t=_--.

The sum is over regions of stochasticity. In other words, we first calculate a diffusion coefficient

for each harmonic, and, then, in regions where resonances overlap, we sum the contribution due to

each resonance. We stress that the problem is still two-dimensional. We have reduced the problem

to one dimension along each H-surface, but we still have to consider solutions for many H-values

if the initial distribution function spans more than one value of H.

The way in which we have defined D',-, implies that its derivative is zer, cvcry.vhere except

on a countable set of points where it becomes infinite. Hence, the numerical evaluation of (23)

requires great care. We deal with this difficulty by using a finite element discretization method in

which case the problem should be characterized by a variational formulation. Below, we use the

Ritz-Galerkin method [Muschietti, Appert and Vaclarik, 1982; Dhatti and Touzot, 1984] to give

the diffusion equation an equivalent variational formulation.

C. Discretization of the Diffusion Code

We start by multiplying (23a) by -f and a wighting function g(y) and then integrate over the

energy domain r = (-ym,, -m.) to obtain

f 7 g(- -t dy =yD "') O f '- -- D -g Of d-y. (24)

Particle conservation impLies that the first term on the right hand side of (24) is zero. Dividing the

range (7min, ,max) into N equal sized elements, the distribution function may be written

N

f - Z f3 (t)o(y). (25)
j=1

where the w,(>) are the basis functions for the finite elements, defined so that

= { (3 ' -)/1 - y-), ,,- < 3y < 3
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and is zero elsewhere, where I,1,) is the i-th element. We now use the L, as the wei!Zht!r."

elements in (25) and defining the elements of the matrices A and B

Aij = r ,jyd, 26a)

B1j = - J D,.vyaLd7, (26b)

where i and j range from 1 - N, we obtain the equation

A - B. . 27)
at

Time is discretized using a leapfrog scheme, and (27) is easily solved as both A and B are tridiagonal.

Note that the matrices A and B are time independent as the fields are constant in time and thus

these matrices need to be evaluated just once. The boundary conditions are that D.,, = 0 at the

lower boundary and f = 0 at the upper boundary. We choose Ymax to be sufficiently large that no

diffusion to this boundary occurs over the time scale of the simulation.

The diffusion coefficient D-, as given by (23b) is evaluated numerically as a function of -, as

follows: First, we determine all the resonances that intersect the H-surface in the interval from

7min to 7max and calculate the trapping width for each resonance. We model the contribution of

each resonance to the diffusion coefficient as a box having a width equal to the trapping width and

a height given by the quantity inside the summation sign in (23b). So, there is a box centered

around each resonance with known height and width. Next, we add the heights in regions where

resonances overlap, otherwise leaving the boxes intact. The resulting diffusion coefficient is not

smooth (Fig. 1) and is not differentiable. However, as evident from (24) and (26b), what is needed

is the integral of D., over each finite element which is well defined and easily obtained.

The stability condition for our code is At < h2 /D., where h is the grid spacing. In ozher

words, the time step used in solving the diffusion equation should be smaller than the time it takes

the particle to diffuse across the grid.

We have tested the code by running it for cases where the diffusion ,_liation has anaitic

solutions and found the agreement between numerical and analytical results to be excellent. We

have also found the number of particles to be typically constant to better than one part in 10 -
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Before we compare the solutions of the diffusion code with exact orbit calculations, it is iin-

portant to check the accuracy of our analytical expressions for the trapping width and stochasticity

threshold. This is done below.

IV. Threshold Calculation

Here we are interested in determining the conditions under which the electrons in the ionosphere

can be accelerated to large energies from rest. The analytical threshold is based on the overlap

condition, and there is no guarantee that at the overlap amplitude the resonances extend down to

.= - Thus, the quantity we are interested in is not the amplitude at which the first two resonances

overlap but the amplitude at which the first three resonances overlap with the stochastic region in

phase space reaching down to 7 = 1. We require the overlap of the first three resonances because

the waves we are considering have N , 1 and for such waves the trapping width is an increasing

function of the harmonic number up to some critical f beyond which the trapping width drops off

exponentially. We have found empirically that if the first three resonances overlap, the remaining

resonances will overlap as well. Thus, the overlap of the first three resonances with the additional

constraint that trapping width(s) reach down to -y = I ensures global stochasticity in the phase

space region of interest.

The experimental value of wave amplitudes for which zero energy particles can be stochastically

accelerated are determined by solving the orbits of 256 particles, all with initial -y = 1 and initial

phases uniformly distributed between 0 and 2,r. The orbits are typically solved up to Qt = 1000

and the maximum energy 7max reached for each particle during this time interval is plotted as a

function of the initial phase, as shown in Fig. 2. This method yields a quantitative measure of

the fraction of particles that are stochastic. In other contexts, the surface of section technique is

useful in determining the level of chaos in phase space; however, since each phase corresponds to a

different value of II, many surface of section plots are needed to determine the phase dependence

and, thus, this is not practical for ub.

The comparison of the analytical and numerical conditions are given below for various plasma

parameters and wave modes.
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(i) R-x mode, wp/ = 0.3

First, we consider the R-x mode in a plasma with wP/Q = 0.3, a = 800 and a range of wrave

frequencies from wiQ = 1.09 to 7. A typical route to global chaos in this parameter regime is

illustrated in Fig. 2. For c = 0.14 which is below the stochasticity threshold, the particle orbits

are integrable and the gain in energy is limited. The 7nmax oscillates as a function of the initial

phase (Fig. 2a) with different phases corresponding to different values of H. The dependence of

the -y.... on the initial phase means that the stochasticity threshold is also dependent on the phase.

As the wave amplitude is increased to E = 0.155, a very small fraction of particles are stochastically

accelerated (Fig. 2b). At c = 0.27, more than 90% of the particles are stochastic (Fig. 2d). The

remaining 10% of the particles are locally stochastic (weakly chaotic) but are limited by KAM

surfaces to low energies. There are, however, a small fraction of particles 5% near ?' = r/2 that

remain integrable even after the wave amplitude has been increased to f = 0.5. The -'m.x is in fact

smallest at 0' = ir/2 as evident in Fig. 2a.

It is important to note that particles can gain energy without being trapped. The energy gain

of a particle starting with zero energy is determined by how far the particle is from a resonance

and how strong that resonance is. The different initial phases correspond to different H values, and

the distance of the particle from the resonance as well as the strength of that resonance, changes

as a function of H. For the R-x mode and the parameters of this section, the spread in H due

to different phases is small. The phase effects are much more important for L-o mode as we show

short!y. For particles n,,;r ,/, = r/2, the particles are far from resonance and the KAM surfaces

separating the particles from resonance persist to high wave amplitudes.

As the simulated value for the stochasticity threshold at a given frequency, we choose two

amplitudes Ej% and E90% which correspond to amplitudes for which 1% and 90% of the particles

first become stochastic, respectively. We use c90% rather than E1 00% because as shown in Fig. 2.

there can be a large gap between c9 0 % and c100%, while the gap between c17 and c90% is much

smaller. In other words, only 90% of the particles are easily accelerated in the parameter regime

above.

At all frequencies in Fig. 3, except wi12 = 1.09, the particles reach energies above -. > 3 in

Qt = 1000 after they become stochastic. We may thus determine what fraction of the particles
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are stochastic. Another check is to solve the orbits up to Qlt = 3000 and check whether they

were accelerated beyond 7max at Qt = 1000. These two tests yielded similar results in all cases.

For /fQ = 1.09, the index of refraction is small and even the stochastic particles could not be

accelerated easily above -, 3. At this frequency, we determined that -y > 2 is a good condition

for stochasticity.

The comparison of the analytical and simulated values of stochasticity threshold is shown in

Figs. 3a and 3b. The theoretical threshold is indicated by the solid curve. The stochasticity

threshold (1h,, is seen to increase with frequency. The value of I% does not vary much, whereas

the value of E90% increases rapidly as a function of frequency. The analytical threshold is in better

agreement with Ei% than E9 0% for most of the frequency range below w/Q -,- 5 with the situation

reversing at higher frequencies. The overlap condition for stochasticity is a crude and simple way

of estimating the condition for stochasticity and it is not surprising that the simulated threshold

values deviate from the analytical results. The fact that the wave amplitudes are rather large

(Ethrs Z 0.1) also contril utes to the error. An additional factor of 7r in the stochasticity threshold

which is often invoked to take into account the effects of higher order resonances (Chirikov, L979)

does not seem appropriate for our case, and it would in fact make the differences between the

analytical and simulated values more drastic.

At low frequencies, the gap between cj% and c9o% is small and thus the transition to global

chaos is more abrupt as is evident from Fig. 3c. The gap widens at higher frequencies and for

,/f2 Z 4 it becomes difficult to accelerate more than 80% of the particles.

Next, we consider the variation of Ethr, as a function of propagation angle a for the same

parameters as in Fig.3 and w/Q = 2. Both the analytical and simulated E are seen in Fig. . to

first drop rapidly and then flatten out as a function of a. The rapid drop of Ethr, is not surprising

since the system is integrable at a = 00. The analytical threshold in this case overestimates the

threshold condition by roughly a factor of 2. The analytical estimate for the overlap of the first

three resonances but not extending to - = I are slightly below (1%. Had we replaced the factor of .1

in (15) by a factor of 2r, the agreement between the analytical and simulated values of Ethrs would

have much better for the parameters of Fig. 4. Even though there exist theoretical arguments for

the presence of this factor, it does not work for all frequencies.
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(ii) R-x mode, w,/,Q = 2

Next. we consider the plasma parameters corresponding to the dayside ionosphere -2.

and a = 800. For this parameter regime only 80% of particles are easily accelerated and there

exists a rather large gap between 80 % and E90%. As a result, we have plotted E,0% rather than 0

in Fig. 5a. The value of Ymax is very small near 74 = 7r/2 and 3T/2 and particles with initial phases

close to these values remain integrable even for very large wave amplitudes. The analytical threshold

lies mostly between cj% and E8o%. The threshold amplitudes tend to be higher than those in case

(i). This is mainly due to the smaller indices of refraction. The number of overlapping resonances

and the trapping width are strong functions of N. For N < 1, the trapping width increases as a

function of harmonic number up to some critical value 1 c,,t beyond which it drops of, exponentially.

The smaller N, the smaller f,,it and thus the fewer the number of overlapping resonances. Since the

index of refraction at a given frequency is smaller for wup/ = 2 compared to that for wp/fQ = 0.3,

fewer resonances overlap and the diffusion is weaker for w/f2 = 2. Thus, it is easier to accelerate

electrons in the nLightside ionosphere.

(iii) L-o mode, wcp/Q = 0.3

Figure 6 illustrates the transition to chaos for w/f2 = 2.6 and a = 80 0. As mentioned earlier,

the phase dependence of the 7 is more important for the L-o mode than it is for the R-x mode.

This is particularly true at large angles where the term e(sin 7 )/N 11 in the Hamiltonian becomes

significant. In Fig. 6a all the orbits are integrable and the minimum acceleration is seen to occur

at V = 0, 7r and 27r. As the wave amplitude is changed from 0.35 to 0.5, only - 60% of the particles

become stochastic. The particles between - 0 to 7r remain mostly integrable. It is not until

has been raised to , 1 that - 50% of the particles between 7 , 0 - ,r become stochastic. The

phases between - 0 to 7r correspond to positive H values. Recalling that p.! x iQ/c - II) and

SC pI11/ 2 , it is easily seen that the trapping width is larger and the (thr, smaller for negative If

values.

The behavior shown in Fig. 6 is typical of what happens at other frequencies in this paramete7

regime. Thus, we use c1 % and c6 0% as the experimental estimates for Ethr,. The comparison o:

the analytical and experimental values of (thr, are shown in Fig. 7a. The analytical value of f,01.s

changes dramatically as a function of frequency whereas the experimental valuts vary slowly
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frequency. The analytical value of (thr, is seen to be highly inaccurate for '/Q :$ 2 and W/! > -5

due to the importance of the phase effects for the L-o mode. If we replace i1. by H and Pij, by the

canonical momentum in (15). we find much better agreement with the experimental values as we

will show shortly.

The ratio of E60% to t1% fluctuates between -, 1.15 to 2.15 as evident from Fig. 7b. This ratio

gets smaller at higher frequencies ir. contrast to case (i). The (thr, values are typically larger than

those for the R-x mode in Fig. 3 in agreement with the previous predictions [Karimabadi et al.,

19901.

Finally, the variation of Ethr, with the propagation angle a is shown in Fig. 8. The variation

of 'thr. with angle has the general form of that for the R-x mode. The theoretical estimates ar

in reasona'.,le agreement with experimental results for a between 10' and 80'. For a Z 80'. the

theoretical threshold (15) appears t,- be inaccurate. As we mentioned e-lier, this is due to the fact

that at large angles the phase dependent term in H due to L-o mode becomes very largP. There is

a simple way of modifying (15) to account for the phase dependence: replace H, by H and Pt!, by

the canonical momentum. Thus, depending on the initial phase, we would have a different v.l1e of

II which we then use in (15). The accuracy of this procedure is tested in Fig. 9. We find a good

agreement with the experimental result. The agreement is surpr-ingly goed considering the crude

way that we have incorporated the phase effects into the expression for the tra.pping width.

The acceleration of particles starting at rest generaliy requires larger , ave ampEtudes than

those starting with a finite energy. The Bessel functions in the trapping width go to zero if evaluated

at - = 1. and there are usually persistent KAM surfaces that separate such particles from the nearby

resonance. The analytical results are however in reasonably good agreement with the experimental

results in spite of the complexity of the dynamics at low energies.

V. Test of the Quasilinear Theory

In order to test the quasilinear theory, we have solved the diffusion equation for many different

parameters and compared the results with e.,act orbit calculations. We take the initial particle

distribution function to be a delta function centered at = I. In the exact orbit calculations. %

ollow the orbits of 256 particles, all with initial - = 1 and phases distributed uniformiy botween

f) and 27. up to 3000. Ihis corresponds rogiihlv to the relevant length scale for ionospheric
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heating [Menyuk. et aL., 19881. The resulting distribution function is very bumpy due to d e::.,n

number of particles used. To obtain smooth distributions, many more particlos would ha,,e G

be used-an approach which is both both impractical and unntcessarv. Instead, we compare -11e

moments of the two distribution functions. The small number of Particles which we use is sufficen,

in this case to yield an accurate result. In the following, we use the quantities - t,) (A - and

(-((A-,) 2) to make the comparison, where -, is the initial -,- of the particles and the

brackets indicate an average over the initial conditions:
0( -- j -f ( f t )d y ( 2 S )

f- f (y, t)dyS

Note that D., x ((Ay)2 ). The test of the quasilinear theory is presented below.

(i) R-x mode, w/f = 1.97

First, we consider the diffusion due to a R-x mode with w/Q = 1.97. a = 800 and w,/fi = 0.3.

The value wp/f = 0.3 corresponds roughly to the nighttime ionosphere at 130 km [Gurevich, 1978].

The theoretical and numerical E h,, are 0.19 and 0.143 respectively.

We carry out our comparison for wave amplitudes ranging from 0.19 to 10. The variation of

several quantities as functions of time are shown in Fig. 10 for ' = 6.19. The quantity ((-Y)

is seen to follow a linear increase in time in accord with the underlying assumptions built into

the Fokker-Planck equation. The particles have not had enough time to sample all the available

resonances and as a result the quantity ((A-.) 2 ) increases with time. Once the particles reach the

energies beyond which D,, becomes very small, the ((A-y) 2 ) flattens out as a function of time and

diffusion stops. For the parameters of Fig. 10. the flattening o'it does not happen until Qt > 3Q00.

The quantity D/DQL which is the ratio of the exact orbit calcuiation of ((AXf)" to that

obtained from the diffusin code, deviates significantly from unity at early times (Fig. 10c, b :t

settles down close to its asymptotic value for Qt Z 750. This is expected s:nce from Eqs. '()b and

16c. it follows tb'. thc diffusion formalism is strictly valid for times long compared with corrct -.on

time scales. Similar results are also seen at higher ampiitudes -is is apptrent in Fg. ! I ,nd 12.

The deviation of particle ,,iotion from the predicted quasininear diffusion at eariv ras can

,)c-ur due to at least t":o eft,' 0s: First, there can exist small but fnit 5iand ,f stof biity w::

an otherwise stochastic phase Lpace. A p-.;tiz-e - .ning close to such an -,and can got tempor--:1:
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t apped. Such stickiness in phase bpiace can obviously have an effect on the diffusion of the partist5.

As we mentioned earlier, tie trapping width increases as a function of harmonic number and it,

the transition to vlobal chaos, the border of chaos lies at th, lowest energies. Since we start the

particles at -e=1, and the stickiness is iiost important at the border of chaos which is also at

, 1 the particles often experience some initial stickiness, however, once the particles reach the

hiicher energies, they diffuse freely. Thus, there exists a finite time before all the particles can diffuse

freely. The second source of deviatior. from the predicted quasilinear behavior is that the particles

may initially sample a few resonances in which case the motion is closer to a coherent acceleration

than diffusion. The first effect results ina retardation in the diffusion and the second effect leads

to diffuion larger than DQL. The balance between these two effects determines D/DQL at early

times. For Qt Z 7150. the above two effects become much less important.

The Fig. lOd-e, snow the evolution of (z) and (Kz) -, 1 in time, where (z) is the average

distance in the z-direction Lravelied by the particles whereas (z) Z 10 is the average z-distance

travelled by only those particles that attained 7,m,, Z 10 during the leng-th of the run. As the wave

amplitude is increased, more of the particles can reach =*'_ 10 and the evolution of (z-) and

()> become more similar as shown in Figs. I' and 12. For parameters of this section, nearllv

all of the particles aeaccelerated in .he positiv", z-direction. We can estimiate the variation of z

with time from ( 2): 7r ./(cNi 1 -~ 1 or

c' )N 29)

\\n have used IL A

:3 0

%>ote that the v-;J i of r, i xd iidependen t uf t h' wave amnp1it de. it Ine of u- N c is

aro :r);)tni iM VHi. ii IL<yl unt 'p-(serits an up Pr bound on )zIn e

........... 7 :ra-, :inner xave amniti V im irtc ac"
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The fraction of particles having "i Z 10 is plotted in Fig. 10e. The theoretical curve f(ow'0"1,s

the experimental curve verv closely especially at later times. The same is also true at other ,v.ve

amplitudes as shown in Figs. 11 and 12.

Next we plot values of (A1)/(A2,.)QL and D/DQL at Q1t = 3000 for a range of wave arnpiitudfs

from c = 0.19 to 10. Here, (%-y) and (AT)QL are the average (over the initial condition) of A-,

as obtained from numerical solutions of orbits and the diffusion code. respectively. The results

are shown in Fig. 13. The quasilinear theory appears to be quite adequate in describinr the

particle motion over this rather large range in wave amplitude. For E > 10. the particle motion

approaches the integrable regime of unmagnetized plasma in which case the diffusion equation

would no longer be valid. The deviation of D/DQL from unit as a function of wave amplitude

has a sporadic behavior and does not seem to follow a nice oscillating pattern. In short, we have

found no evidence for oscillations of D/DQL as a function of wave amplitude, in contrast to what

was found by Rechester and White (19801 in their studies of the standard mapping. Furthermore.

the fluctuation amplitude of D/DQL is much smaller than that seen in their work. The presence of

resonances of different sizes dearly leads to aveTaging beyond that which is found in the standard

map and thus to a closer correspondence to quasilinear theory. These results suggest that the

standard map is not an ideal paradigm for real, physical systems.

(ii) L-o mode, w/f2 = 2.6

Next, we consider the diffusion due to the L-o mode with ,/P = 2.6, a = .%° and CA/' =.3.

The theoretical threshold is 0.42 and the numerical thresholds f.17 and c07 are: 0.4 an ii.,

iespectively.

The evolution of the various quantities as functions of time are shown in Figs. ii throucn 'il6.

The quantity ((_y)2 ) follows a more or less linear increase in time as before.

The diffusien is larger than I)QL at early times as shown in Fig. l-c even though fr = 27

i,,ss than 50% of the particles are stochastic. Similar behavior is also seen at higher vave ampl:tule

Figs.5, 16c). This is mainly due to the fact that at early times some particl, 's a.-( -oheretlY

accelerated by a few resonances. As before. for 9 t ., 750. the D,r.. ettles down riose tclu iVs

6 nal value. For - 0.127, the asymptotic value of DIDQV is below unity ( Fi. i 1. Ihis. ,

to the fact that at this wave amplitude less than 60" of the particies are stochastic. As the
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ampiituoe is increased. mnore of the, particles become stochastic and eventually D/DQL b(co1mnr

!arger than unity as snownt in Fii4S. 15C and 16C.

The evolution of(z anid (z) > n time are shiown In Fig. Li1d for c 0.4O27. A good

majority of the PaLrticles are now travelling in the negative -d-irection and the analytical estimate

30) agrees rea-sonably well with 'z) but not with K;). This is expected since for cE 0.427

less than 60% of the particles are stochastic and (30) is strictly valid for high energy particles.

Furthermore, as we havce aiready shown. for the L-o mode the phase effects becomre important and

in estimating i.',, it is the full Harniltonian 11 anid not II,, that has to be used:

v=(-e- I[/rnc - - 7 s ~in a sin ip (31)

N ow. v. can be either negative or positive depending on v and 1. Notice that /(Z) 'Y>1 is actually

larger in Fig. 14e than it is in Figs. 13e and 16e. This is a result of the high energy particles

moving in the positive zs-direction when 0.427: 'whereas, when c - 3.9 and 10. the high energy

particles move large distances in both the positive and negative z-directions. anid, thus, averaging

yields smaller values z-values. When c 0.427, the particles having -y ; 10 cover a range in z from

0 to 27 km in Qt :3000; whereas, for c =3.9 and 10, the range in z is -23 to 410 km and -:10 to

43 km, respectively.

The fraction of particles with 10 as obtained from the diffusion code and exact orbit

calculations are shown ini Figs. 14e, 1 e and 16e. The agreem _nt between the two mpethods seemrs

very' good for Qt 1000.

Finally, we examine the behavior- of ~At/A)QL and D/DQL as functions of wave amplitude.

This is shown in Fif 17 vlbero wi aep'itl( Wrl,'A') QL, and P D,L at 1Gt 3000 for a mimqe

of wave amplitudes. I hec quantityK.r)iAf QL is well below unity for c=0.43 and it does :iot

reach unity until the wave amiplitude has been increased to 1.5. For c 1.5. the (~/A)Q

has small ftict uatioins about it t;' The (A2,-1'QL wa obtained by usinig 1 1. Hlowev er. as v

-ihowed e-arlier, thfe wia al- '4i~nortan t for Oto L-o mode anid the (Oirs depend s tron, oi v on

mmo valuei of 1I v; ihi ch ia.-, a If-inite raml pi'v-n fo)r -1 I The .C~hr can change bliv more than , far or

!f 3 enndinq wt the vdlip 0r1 I .q., Fio. 9). TLus. we w'msitk into arcccunt tefraction1

of partu des thIiat are rnot st{l a t i given wave aIMuliwtde. Thbe ratio of sto)chastic pa.riLic1e i

60 7,% at. ,2 SA at 0 -Oc rl% at l,- 93%7c at c 1-3. nd 9%At



This is why (&,)/(A7)QL is below uaity for c < 1.5. Let us denote the integrable particles by. tie

subscript 'int' and the stochastic particles by the subscript 'st'. What we should really be piotti:ng in

Fig. 17a is (-\-f) /(-y70QL and not (Af)i(Xf)QL. But (7),tI/7)QL - ( +., )/Nrt-,,NQL-

where we have assumed ('),, /(?)qL < 1. Using the values of N,, cited above for various C's. it

then follows that (A-,)3 JI( T)Qz is indeed very close to unity. In short, the discrepancy between

(Ay) and (A-Y)QL in Fig. 17a for c : 1.5, results from the inclusion of integrable orbits in (-%) but

not in (&Y)QL. The fraction of stochastic particles can be calculated analytically by incorporating

phase effects in (15) as we did in Fig. 9. We then find that stochastic particles are well described

by the diffusion code.

Similarly, the agreement between D and DQL is very good. This result is encouraging, consid-

ering that the theoretical analysis presented in this paper are at their worst for the parameters of

this section where the phase effects are important and H is not just confined to one value. Thus,

we conclude that the diffusion formalism is quite robust and is highly accurate in predicting the

time evolution of an ensemble of particles.

VI. Application to the Ionosphere

In this section, we assess the plausibility of accelerating the electrons in the i'nosphere using

ground based transmitters.

There are three requirements for the cffectie acceleration of particles: ( 1 ) the wave amplitude

must be larger than Eth,,; (2) particles must remain in the system (ionosphere) long enough to

diffuse to high energies; and (3) the acceleration mechanism should be insensitive to details of -he

initial particle distribution.

If condition (I) can be met, then conditioa (3) is also satisfied since the stochastic part:cle

.cceleration, in contrast to any coherent mechanism. is quite robust. First. we considr Lhe p ;w,-r

needed in order to achieve c _ Ch,, in the ionosphere. As we showed earlier, the lwp:,, (t, o:c',r.

for the R-x mode in the nighttime ionosphere (w/pf/ = 0.3) in the frequency range .;/0 - 1.9 - 2.

The threshold can be as low as 0.08 at a - 500 and 0.1 at o - 800. At such low ,ave

ampilitdps, only a small fraction -, 5%C of particles can be accderated. Fortunately, the transition

to global chaos is abrupt in this parameter regime and once c is raised to - 0.14, more than 907
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of the particles become stochastic. Thus. the minimum wave amphtude for stochastic particle

acceleration by ay;tes % ithi A 1 
< I is between c --60s - 0.14.

The stochasticity threshold is in general much lower (c -, 10-4 - 10- 3 ) for waves having N\", > 1,

but the Hlamiltoniant surfaces are closed in such cases, only a few resonances are available, and the

acceleration is much smaller than in cases where, N.i < 1.

The power flux is related to the wave amplitude by [Menyuk, et al., 1988]:

P 2- :3 (32
p _oc 0.,) wt/cm2. (32)

Thus, a power flux in the range - 0.7 - 2.3 lT/cm- is required to accelerate the zero energy

electrons to large enerOes in the ionosphere. Let us for the moment suppose that such a power

flux can be achieved. We then estimate the size of the acceleration region. The main motion of

the particle is in the z-direction and the particles execute Larmor motion in the perpendicular

motion with rL = I'±/0. Using (30) and setting z - rL, we obtain 7v±/c -,, N 1Qt. For the
parameters in Fig. 10 and for f2t = 3000, we have -v±/c -, 312. Thus, the escape of the

particles occurs in the z-direction. Even though the evolution of < Z > > I. in time is insensitive

to the wave amplitude, more particles can be accelerated in less time at larger wave amplitudes.

For e - 0.1 - 0.2. the typical distance that is required for accelerating a significant number of

particles to -y > 10 is of the order of 10 - 20 km as shown in Fig. 10. Thus, considering a region of

ionosphere 10 km x 20 km, the total power required is - 1.4 x 101 - - 4.6 x 10 '2 W. If we launch I

msec pulses with a lutv cycle of 1 per minute. we find an average power of -- 107 - 10' W. These

values are beyond the prnsent-dav capabilities.

In view of our .indings, we are forced to consider ways to reduce the stochasticitv threshold.

There are several possibiiities: (1) Preaccelerate the electrons. Thi involves a two-step process.

First, the particles are accelerated to weakly r:Aativi ,tic energies and then the rf waves are applied.

Since the (hr, is lower at hi gher eneries we could make the particles stochastic for lower r

am pitudes l s.Tnc of (th r on enerfv k. howver, weak and this technique canr at nost

lower the ampiitude reouirod v a fartc,r of 2. M1 Apply sovoral waves at closely spaced frequencies.

l'e problem i- that if the wave anpiitudes are to() l,,iow the (,h, value of a single wave. die

rsuitinit diffusion wouid he iimited and slow. (3) 1he manetic tield in the ionosphere is wel

represenited by magnetic dp,,, Thus, a more realistic application to the ionosphere reqo: me5
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taking into account the inhomogeneity of the magnetic field. It is well known that even a '.:iak

inhomogeneity in the magnetic field can lower the 'thrs by as much as 2 orders of maqn,-c2,_.

Physically, the change in B, is equivalent to having several resonances for a given harmonic n ;n~er.

Thus, the resonances are more tightly packed and the overlap occurs at smaller arnplitud.'- tL; n

in the uniform field limit. In order to have a strong enough diffusion, however, the wave amplitude

cannot be much smaller than in the uniform field limit.

Finally, the self-consistent effects are expected to play a role once a significant number of

particles are accelerated. The study of self-consistent effects as well as mode conversion are currently

underway, and preliminary results were reported by Akimoto and Karimabadi (1989).

VII. Conclusions

In this work, we have carried out a detailed comparison of the theoretical stochasticity threshold

with exact orbit calculations. We reduced the diffusion equation to a one-dimensional form by

transforming to a coordinate system where the Hamiltonian surface is one of the axes. We then

constructed a model for the diffusion coefficient and wrote a finite element code that solves the

diffusion equation. This code has been carefully compared with a particle code, and it shows

excellent agreement over a wide range of frequencies and wave amplitudes. We applied our results

to the problem of radio-frequency acceleration of the electrons in the ionosphere. We found that

the powers needed are beyond present-day technology. We then discussed several ways to overcome

this problem.

Finally, we emphasize that the method of reducing the diffusion equation to one dimension and

the code that we have developed are quite powerful and are expected to find many applications.

We are currently applying the above techniques to the problem of particle acceleration in planetary

shocks.
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Appendix A: Diffusion Equation Along the H-surface

In this appendix, we show how the diffusion equation can be redu'ed to a one-dimensional

form by choosing a coordinate system that has t1 as one of the axes. A given I-surface is given

b V:

H, '7c2 - pw/k. (Al)

We can rewrite the equation for H, as
(p __1  bH \ 2 p 2  b , t

a H  +-r - I_ f",(A
7ne (-'H t2C2 ell

where

a- (A2b1

bH - (A2c)
'V11 '

The Hl-surfaces are not confocal since both aH and bH dep nd oa H. Thus, a confocal orthogonal

transformation cannot be made. In fact there is no simple transformation from (PiiP±) to an

orthogonal coordinate system with the H-surface as one of the axes. Fortunately, the orthogonality

condition is not necessary, and, as we now show, any component of the diffusion tensor not parallel

to the H-surface is zero.

Let us consider the diffusion equation under the transformation from (pIpIP_) to (Il,g) where

g is arbitrary for the moment. Wpe start with (19) rewritten in tenso, notation:

af a) RD,j of (A3)i)t R Op, j

where R = p is the .Jacobian of the transformation from Cartesian to cylindrical coordiniates.

From the chain rule, we have
& JYk 3 (\4)

=p, Op, Oyk

where .7 If aitd q2 g. Using this in (A3), yields

Of I ayk 0 (RD, O dOf)

Ot R Opi dYk " i)pi

,9(, oyf -O.f, O f a ( I O(.k'3

dyk~ 0, Op. \ O? i)11



or

Of - D - RD0jj7 O OyOf d (1y Y;"

where D!k is the new diffusion tensor and is given by

- Oyk Oye
Dk=p D epj

Writing out the various components of the diffusion tensor explicitly, we have

D111 = a DII)t + 2D)j, + D±± a , (ASa)

DHH = a 2D± 11 i-L-

Dgg D1111, g )2 + OL g ag + 1, O g )21 (A Sb)

D = [D 1111, OH + 2D±,11  + Di, , +

DHg= [ D1 11Iffv2, ±~I Ol p

OH Og 14 P11 P1

D±±_ 0 0 M j, (ASc)

and

DHg = DgH. (ASd)

The derivatives are evaluated at the crossing points of a given H -surface and the resonanco curves.

In particular, we find

OH _Q f OH
-P iP±?'IlOP

It follows that DHH is identically zero. Furthermore. using the relation (A9) and substituting 22)

in (A8c), we find that DH9 is identically zero independent of the form of g. So. the new coordirate

system need not be orthogonal. The fact that DH9 = DHH = 0 is hardly surprising since both

DH_, and DHH involve integrals over the quantity H which is zero.

A useful choice for g is the relativistic factor -f. The surfaces of constant ", define circic

momentum space. The oil variables are realted to the new variables by

Pme =  -gJ ) Njj t z

E = . 2 1 -N 11
2 . - H 2 (AlOb
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:111d the Jacobian of the transformation 'in dirueisionless units is given by

R ( All )

w.,hich is valid for a 90'. Replacing g by -Y and using (A8) through (All) in (A6) arid (A-,). we

obtain the diffusion equation (23a) and diffusion coefficient (23b).
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